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Abstract. In this paper a deterministic method is proposed for the global optimization of mathematical 
programs that involve the sum of linear fractional and/or bilinear terms. Linear and nonlinear convex 
estimator functions are developed for the linear fractional and bilinear terms. Conditions under 
which these functions are nonredundant are established. It is shown that additional estimators can be 
obtained through projections of the feasible region that can also be incorporated in a convex nonlinear 
underestimator problem for predicting lower bounds for the global optimum. The proposed algorithm 
consists of a spatial branch and bound search for which several branching rules are discussed. 
Illustrative examples and computational results are presented to demonstrate the efficiency of the 
proposed algorithm. 
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estimators. 

1. Introduction 

Many problems in engineering design, economics and managment can be formulat- 
ed through nonlinear programming models. These models, however, often involve 
nonconvex functions and therefore when conventional techniques are used they can 
get trapped in local solutions. Recently there has been a significant effort in the area 
of global optimization. Stochastic and deterministic methods have been developed; 
for recent extensive reviews, see Schoen (1991) and Horst (1990). Deterministic 
methods have the advantage that they can provide rigorous guarantee of global 
optimality of the solution but require some assumptions about the mathematical 
structure of the model. Since many nonlinear optimization models do exhibit a spe- 
cial structure, there is a clear incentive to consider the solution of these problems 
with deterministic methods. 

An important class of nonconvex optimization problems with special structure 
correspond to nonlinear programming problems with bilinear or linear fractional 
terms. These commonly arise for instance in engineering design problems (e.g., see 
Reklaitis and Ravindran, 1983; Papalambros and Wilde, 1988; Grossmann, 1990; 
Floudas and Pardalos, 1990). A1-Khayyal (1992) presented a review of models 
and applications of bilinear programming. The bilinear and linear fractional terms 
are factorable functions for which McCormick (1976) has presented a general 
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approach for deriving underestimator functions that can be incorporated in glob- 
al optimization algorithms. A1-Khayyal and Falk (1983) proposed an algorithm 
for bilinear programs with linear constraints in which linear estimators over the 
bilinear terms are used. Swaney (1993) addressed the asymptotic behavior that can 
occur in this type of algorithm when a solution does not lie at an extreme point. 
Algorithms for bilinear programming models have also recently been developed 
by Sherali and Alameddine (1992). These authors presented a linearization refor- 
mulation technique that embeds the method proposed by A1-Khayyal and Falk 
(1983) and predicts stronger bounds for the global optimum. However, the main 
limitation is that the size of the linear programming underestimator problems grows 
exponentially with the number of constraints in the original problem. 

Falk and Palocsay (1992) proposed an algorithm for optimizing the sum of 
linear fractional functions subject to linear constraints. The algorithm consists of 
a sequence of linear programming problems in which bounds on feasible subsets 
are added. These bounds are tightened iteratively to reduce the search space. These 
authors also developed convergence properties for this algorithm by extending the 
approach presented by Dinkelbach (1967). However, the rate of convergence of this 
method can be slow. Konno et al. (1991) addressed the minimization of the sum of 
two linear fractional functions over a polytope for which they applied parametric 
linear programming algorithms. Floudas and Visweswaran (1990) presented an 
algorithm based on a Benders based decomposition approach that can be used to 
solve bilinear and/or fractional programming problems. In this method a sequence 
of subproblems and relaxed dual subproblems are solved. Although the advantage 
of this method is that there is freedom for choosing the structure of the subproblems 
(e.g., they can correspond to linear programs or some special type of problem), 
one potential difficulty is that the number of relaxed dual subproblems that have to 
be solved at each iteration may grow exponentially with the number of variables 
interacting in different nonconvex terms. Among other more general methods, 
Horst and Tuy (1990) proposed a global optimization algorithm that makes use of 
quadratic outer approximation cuts to represent the feasible region. 

In this paper a new deterministic method is proposed for the global optimization 
of mathematical programs that involve the sum of linear fractions and/or bilinear 
terms. The proposed method is a generalization of the algorithm presented by Que- 
sada and Grossmann (1993) for minimizing the sum of linear fractional functions 
that arises in the global optimal design of Heat Exchanger Networks. The unique 
feature of the proposed method is that bilinear and linear fractional terms are sub- 
stituted by both linear and nonlinear convex estimator functions that can be derived 
using the approach presented by McCormick (1976). Conditions under which the 
estimator functions for different types of terms are nonredundant are determined. 
A convex nonlinear underestimator problem is then proposed that predicts low- 
er bounds for the global optimum. These bounds can be further strengthened by 
the inclusion of additional estimators that are obtained through projections of the 
feasible space. For the particular case of bilinear terms, the additional estimators 
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are equivalent to the reformulation technique of Sherali and Alameddine (1992). 
To find the global optimum, a spatial branch and bound search is conducted in 
which the lower bounds are obtained from the nonlinear underestimator problem. 
Modifications to the branching roles proposed by Sherali and Alameddine (1992) 
are used in this search. 

The paper is organized as follows. Firstly, the case of a nonconvex objective 
function and a convex feasible region is considered. Here the properties of the 
different estimators functions, the formulation of the convex NLP underestimator 
problem and the basic algorithm are presented. Also, the performance of the algo- 
rithm is illustrated through a small example. The algorithm is then extended to 
the case of nonconvex feasible regions for which the necessary modifications are 
described. Finally, numerical results are given for a variety of problems that have 
been reported in the literature. 

2. The Problem 

2.1. MATHEMATICAL MODEL 

The following mathematical programming problem that is considered in this paper 
involves a nonconvex objective function with linear fractional, bilinear and convex 
terms, and is defined over a bounded convex feasible region, 

m i n f  ~ Pi = ci - - c,jpiq  + h(p,  q, z )  
iEI j E J  qJ iEP j E J  t 

s.t. g(p, q, z) <_ 0 
z E Z C R  ~ 
pL <_ p < p~ 
qL < q <_ q~, 

p E RI~ I+lI'l, q E RI~ I+lg'l 

(PO) 

The functions h, h �9 R IIl§247 ~ R 1, and g,g " R Izl+lI'l§ ~ R ~, 
are assumed to be convex and differentiable. The set Z is bounded; cij are real 
coefficients of the linear fractional terms or bilinear terms. The variables Pi and qj 
are bounded and without loss of generality it is assumed that pL >_ 0 and qL >0. 
For simplicity in the presentation the sets I and F,  and J and JI are assumed to 
be disjoint. This condition can be relaxed or it can easily be satisfied by defining 
additional variables and identities in problem (P0). 

2.2. REFORMULATION 

To provide a compact and uniform representation for the bounding functions of 
the linear fractional and bilinear terms, problem (P0) will be reformulated in the 
space (x, if, z, r) by relabeling the variables p and q and by defining the fractions 
and bilinear products as follows: 
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(a) Fractional terms 

Pi = X/o qj = yj 

b) B/linear terms 

Pi  
- -  = rij i E I, j E J (1) 
qj 

pi = rio qj = Yj Piqj = xij i E I ~, j E J~ (2) 

Also the following sets are defined to relate the variables (x, y, r) with the corre- 
sponding positive (P) and negative (N) fractions and b/linear terms in the objective 
of (P0): 

PR = { ( i , j , k , m )  l i E I ,  j E J ,  c i j > O , k = j ,  m = 0 }  

P s  = { ( i , j , k , m )  l i  E I ' , j  E J ' ,c i j  > O,k = O, m = j }  

NR = { ( i , j , k , m )  l i  E I , j  E J, cij < 0, k = j ,  m = 0} 

NB = { ( i , j , k , m )  l i  E I ' , j  E g' ,ci j  < 0, k = 0, m = j}  

with P = PR U PB and N = NR U NB. 
By using (1) and (2) and the above definition of sets, problem (P0) can be 

written in the following compact form: 

min f - -  S_, - + h(xo, ro, z) 
i ~ I  j E J  i E I  ~ j E J  ~ 

S.t. yjrik ~_ Xim ( i , j , k , m )  E P 
yjrik <_ Xim ( i , j , k , m )  E N 
g(xo, y, ro, z) <_ 0 (P1) 
X L <: X < X u 

yL <_ y <_ y~ 

r L < ~, < r u 

z E Z  

where the new inequalities have been relaxed according to the sign of the cost 
coefficient (cij >0 for ( i , j , k , m )  E P and cij < 0 for ( i , j , k , m )  E N).  Also, 
x0 = [xi0] and r0 = [ri0] are the subsets of x and r variables that are involved in 
the functions h(.) and g(.). The bounds for x, y and r are obtained from (1) and (2) 
using the bounds for p and q in (P0). Problems (P1) and (P0) are equivalent and 
the algorithm is presented based on formulation (P1). The reader is encouraged to 
read Appendix A which presents a small problem that is reformulated to the form 
of (P1). 

2.3. VARIABLE BOUNDS 

It is important to have tight lower and upper bounds for the variables z, y and 
r involved in the nonconvex terms in (P1) since these bounds will determine the 
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quality of the approximation that will be developed later in the paper. These bounds 
determine the size of the search space for the global optimum, but also as shown 
later in the paper, from the value of these bounds it is possible to determine in 
advance whether some of the estimator functions will be redundant. 

In the initialization step of the algorithm, lower and upper bounds for the 
variables xi0 and yj in the fractional terms (i E I ,  j E J) and for the variables rio 

and yj in the bilinear terms (i E I ~, j E jr) are calculated. This is accomplished by 
solving the corresponding minimization and maximization subproblems for each 
variable: 

yL = {minyj I g (x ,y , r , z )  <_ 0} j E J U J '  (3a) 

y~ = { m a x y j l g ( x , y , r , z ) < _ O }  j E J U J '  (3b) 

x L = {minxim [g(x ,y , r , z )  <_ 0} i E I (3c) 

X~o = {max xim l g(x, y, r, z) <_ 0} i E I  (3d) 

L = {min I g ( x , y , r , z ) < O }  i E I '  (3e) r i o  r i k  _ 

r~o = {maxrik I g(x, Y, r, z) __ 0} i E / '  (30 

where the bounds in (P1) are used for the variables x, y, r and z in the above 
subproblems. These subproblems have a unique solution since the feasible region 
is convex. Also, since they have the same feasible region and are independent, they 
can be solved in parallel. In some particular instances, it is possible to generate 
these variable bounds through simple evaluations (Quesada and Grossmann, 1995). 

Furthermore, for the fractional terms it is possible to calculate lower and upper 
bounds for each individual term rij, i E 1, j E J by solving the subproblems, 

r L = {rain xi~ I g (x ,y , r , z )  <_ 0, z E Z} i E I , j  E J (4a) 
Yj 

ri~. = {max xi___oo I g ( x , y , r , z  ) <_ O,z E Z} i E I , j  E J (45) 
Yj 

The subproblems in (4) have a unique solution (Bazaara and Shetty, 1979) and 
in the case that the feasible region is given by linear constraints they can be 
reformulated as LP problems through the transformation proposed by Chames and 
Cooper (1962). Note that for the bilinear terms, it is not possible to obtain valid 
bounds for the variables xij, i E I ' , j  E J', since the resulting subproblems are 
nonconvex. 

3. Estimator Functions 

3.1. DEFINITION AND PROPERTIES 

Following the treatment of McCormick (1976) (see Appendix B), the bilinear terms 
that appear in the constraints of (P1) can be replaced by linear convex estimator 
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functions (B.11 and B.12) yielding the following constraints: 

Xim <_ yj rik + rL  yj u L u - -  y j r ik  ( i , j , k , m )  E P (5a) 
u L u Xim < y L r i k + r i k Y j - - Y 3 r ~ k  ( i , j , k , m )  E P (5b) 

L L L xim >_ yLrik § rikYj -- Yj rik (i, j ,  k, m)  E N (6a) 

u rikY J yj ri k Xim >_ y jr ik  +~ u . _  u u ( i , j , k , m )  E N (6b) 

Note from the above that it is only necessary to include over or underestimators 
depending of the sign of the cost coefficient, cij. 

Additionally, as shown in Appendix B, it is possible to develop nonlinear convex 
underestimator functions according to (B.15) for the constraints with (i, j ,  k, m) E 
P which yields: 

1 
r i j  > ~ . u  q- x u 

- -  yj YJ Yj 

rij > xi_____~m 1 1 
_ y? + y? 

( i , j ,  k,  m)  E P (7a) 

(i, j ,  k, m) E P (75) 

The following properties can be established for the linear and nonlinear estimator 
functions in (5) and (7) for the linear fractional terms in (P0) with positive cost 
coefficients, cij. 

x L 
PROPERTY 1. When r L = ~'~ t . r  r ~ ~,~ PR, the linear y~ ~ "  ik = . - : ~ ) , ( i , j , k , m )  E 

uj 

overestimator (5a) (or (5b)) is a linearization o f  the nonlinear underestimator (7a) 
(or (75)). 

Proof. See Appendix C. 

COROLLARY 1. The nonlinear underestimator (7a) (or (7b)) is stronger than the 
x. ~ u 

linear overestimator (5a) (or (5b)) when r L = ~j  ( or r~k = ~ ), ( i, j ,  k, m)  E 

PR. 
Proof. See Appendix C. 

The following property, however, establishes that the linear overestimators in (5) 
are not necessarily redundant. 

xb 
PROPERTY 2. When r L > .-:~ ( or r~k < Yj 
overestimator (5a) (or 5b) is nonredundant. 

Proof. See Appendix C. 

~-~y~ ), (i, j ,  k,  m)  C PR, the linear 

For the bilinear terms in (PO) with positive cost coefficients, clj, the following 
oronertie~ can be established. 
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Fig. 1. Projected feasible region for (a) fractional term and (b) bilinear term. 
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PROPERTY 3. When x~m = r~ y~ (or x ~  = r i~ g ), ( i, j, k, m) �9 PB, the linear 
overestimator (5a) (or (5b)) is a secant of the nonlinear underestimator (7a) (or 
(7b)). 

Proof. See Appendix C. 

COROLLARY 2. The linear overestimator (5a) (or (5b)) is stronger than the 
nonlinear underestimator (7a) (or (7b)) over the feasible region when xL~ = 

r ~ ~ ( i , j , k ,m)  PB. = j ,  �9 

Proof. See Appendix C. 

r u u~ PROPERTY 4. When xLm > rLyL(or x~,~ < ikyj j , ( i , j , k , m )  e PB, the non- 
linear underestimator (7a) (or (7b)) is nonredundant. 

Proof. See Appendix C. 

3.2. G E O M E T R I C A L  INTERPRETATION 

The estimator functions (5), (7) have the property of yielding an exact approxima- 
tion at the boundary defined by the lower or upper bounds of x, y~ r (see Appendix 
B). A geometrical interpretation of Properties 1 to 4 is as follows. Consider the 
case of a fractional term ((i , j ,  k, ra) E PR, Property 1 and 2) and the projection 
of the feasible region into the space of the variables involved in the nonconvex 
term (variables x and y, Figure la). Note that the contours of the fractional term 
(r = ~) correspond to the straight lines that pass through the origin (dashed lines 
in FigUre 1 a). The nonlinear estimators (7) provide the exact function value of the 
fractional term at the bounds of the variables z and y as can be easily verified from 
(7) by substituting the corresponding bounds. As shown in Corollary 1, when the 
bound over the individual nonconvex term is redundant (e.g. r L = x~) there is n o  y -  



46 IGNACIO QUESADA AND IGNACIO E. GROSSMANN 

part of the feasible region in which the linear estimator (5) is stronger. However, 
L . . . .  

when this bound is not redundant (e.g. r L > ~- m Figure la) the hnear estimator 
provides an exact approximation at points in ~r the nonlinear cannot. 

For the case of a bilinear term ((i, j ,  k, m) E PB, Property 3 and 4), the linear 
estimators (5) are the ones that are expressed in terms of the variables involved in 
the nonconvex term, y and r and therefore they provide an exact approximation at 
the bounds of these variables as seen in Figure lb. This can also be easily verified 
from (5). Also, according to Property 4, the nonlinear estimator in (7) will only 
be nonredundant if there is a strong bound over the individual bilinear term (e.g. 
x L > f L y  L in Figure lb). 

3.3. PROJECTIONS 

The linear and nonlinear estimator functions in (5), (6) and (7) presented in the 
previous section use fixed lower and upper bounds of the variables over which 
the approximation is obtained. Additional estimators that tighten the convex rep- 
resentation can be generated by considering bounds corresponding to hyperplanes 
of the boundary of the feasible region and which are projected in the space of 
the variables involved in the estimator function. In particular, from the solution 
of the subproblems (3), (4) solved in the initialization step in which bounds for 
the individual variables are determined, the following inequalities projected in the 
space (yj ,  xin) can be obtained: 

)t l in l X * 0 > 2.., egz (YJ, i n , ( )  (8) 
s 

-lin[. X where he are the Lagrange multipliers and 9e (YJ, in ,  (*) is a linearization of the 
constraint ge given in terms of yj and xi,~ with the remaining variables ( fixed at 
their optimal value (*: 

g " ~ -  * x" * V " * * [ YJ - Y: 1 e (YJ, X in ,  (*)  = g l (Y j ,  in ,  ( )-4- yj ,x ,mge(yj ,  x in ,  ( ) , (9) 
I. J Xirn Xin 

The projections in (8) give rise to linear inequalities of the following form: 

yj < a + bxim (10a) 

yj > a' + blx~n (10b) 

from which the following nonlinear underestimators that are similar to (7) can be 
generated: 

rik > Xim > Xim 1 1 ( i , j , k , m ) e P R  ( l la)  

rik > Xi___m_m>_ Xim ~_xiUm ( 1 1 
- yj a ' + b ' x i n  ~ a,+b,xim ) ( i , j , k , m ) E P R  ( l lb)  
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The following property can be established for these estimators: 

PROPERTY 5. The nonlinear inequality (1 la) (or (1 lb)) is a valid convex underes- 
timatorwhen b < 0 (or b r < 0), and is nonredundantwith respect to the nonlinear 
underestimator in (7a) (or (7b)). 

Proof. See Appendix C. 

It can happen that when the projected inequalities in (10) are obtained using the 
solution of the bounding subproblem, only a simple bound over the variable is 
obtained (e.g. b = 0; a = y~) instead of a linear inequality. In this case, one 
might try to obtain an inequality by solving an additional problem fixing the 
projection variable at a given value within the bounds (i.e. Xim = X~m with 

! u zLm < xim < xi.0.  
The inequalities in (8) can also be projected in the space (yj, r/0), i E F ,  j E J~ 

for the bilinear terms in (P0) The projections for the case of  rio as a function of  yj 
have the following form (the case of yj as a function of  rio can also be considered 
(see example 1)) 

rio >_ a + byj (12a) 

rio <<_ a I + btyj (12b) 

These can also be used to generate additional estimator functions through the linear 
estimators (5) and (6). In the bilinear case the estimators have the following form: 

Xim < yjrik<_yLrik+(a+byj)Yj--yL(a+byj)  ( i , j , k ,  rn)EPB (13a) 

_ _ y j r ik+(a  +by j )y j  ( i , j , k , m )  X i m  ~ y j r i k  < u t t u t t - y j  (a +b yj) C PB (135) 

Xim >_ yjrik>_yLrik+(a+byj)Yj--yL(a+byj)  ( i , j , k , m ) C N B  (14a) 

Xim >_ yjr ik>_y~rik+(a '+b'y j )y j -y~(a '+b'  yj) ( i , j , k , m ) E N B  (145) 

where b < 0 and b t < 0 yield convex estimators in (13) and b > 0, b I > 0 
for (14). These type of inequalities are in fact equivalent to the ones proposed 
by Sherali and Alameddine (1992). The difference is that (13) and (14) are only 
generated when quadratic convex terms are obtained and here only the bilinear 
term is linearized. With the approach presented in this paper, only a small number 
of this type of constraints are generated since it is possible to identify nonredundant 
linear functions in an explicit form. 

The bilinear terms in the constraints of problem (P1) can arise from bilinear or 
fractional terms in the objective function of problem (P0). When the original term 
was a fractional one, projections of the type of equation (13) are not possible to be 
generated since the variable rij, i E I ,  j E J, does not exist in the constraint set 
g(x,  y, r, z) <_ O. Hence, it is not possible to project the bounds of yj over rij. 
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However, projections can be performed for the bounds of rij, i E I ,  j E J, when 
the following fractional bounding problems in (4) are solved: 

min(or max) xi0 = rij 
Yj 

s.t. g(xo, y, to, z) < 0 (PR) 
0 <_ X L <~ X <-- xu 
0 < yn << y < yU 

The nonlinear problem in (PR) has a unique solution. Moreover, as Charnes and 
Cooper (1962) have shown, if the constraints g(x, y, r, z) are linear, (PR) can be 
transformed into a linear programming problem. To achieve this, the transformation 

1 is introduced yielding the formulation: variable tj = -~ 

min( or max ) t j x io 
s.t. g(xo, y, r0, z) _< 0 

t j  yj = 1 (PR1) 
O ~ _ x L  ~ x ~ _ x  u 
O < y L ~ y ~ _ y  u 

The linear constraints and bounds in (PR1) are multiplied by tj and the resulting 
products of variables are denoted as (x I, yl, r I, z I) which yields the LP problem: 

min(or max)x~0 
s.t. g~(x', y~, r ~, z ~, t) < 0 

' 1 (PR2) yj = 
x I >_ O, yt > 0 

Here g~ includes the transformed original constraints and the additional linear 
constraints generated from the bounds. The solution of the LP problem (PR2) is 

! 
used to generate projections of the variable xi0 over tj in a similar form as in (8), 

o > tj, (15) 
t 

In this form the projection that is generated has the form: 

/ < d  / ' > d + e t j  (orx~0 +e' t j )  (16) Xio _ 

or expressing it in terms of the original variables, 

rij  >>_ d + e__ (or rij  <_ d' + e')  (17) 
Yj Yj 

In this way, additional estimator functions can be obtained by using equation (17) 
in the linear underestimators (6), 

e L 
Xim >~ r i d y j > ( d y j + e ) + y L r i k - ( d + ~ y j )  ( i , j , k , m ) e N R  (18a) 

Xim > r i j y j > ( d ' y j + e ' ) + y ~ r i k - ( d ' + e ' Y  L) ( i , j , k , m ) e N n  (185) 
Yj 

These estimators are convex when e < 0(e' < 0). 
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PROPERTY 6. The nonlinear estimators in (13), (14) and (18) provide an exact 
approximation at the boundary defined by the projected cut. 

Proof. See Appendix C. 
The estimators in (11), (13), (14) and (18) are only a subset of all the projected 
estimators functions that can be generated. In this paper at most one projected 
estimator for each variable in the nonconvex term is used. The estimators (13) and 
(18) can be particularly relevant because when the cost coefficient, eij , is negative 
the nonlinear estimators (7) cannot be used. This is illustrated later in Example 3. 

3.4. CONVEX NONLINEAR UNDERESTIMATOR PROBLEM 

Xim 

Xim 

Xim 

Xim 

Xim 

u e! 
Xim >_ ( d' yk + e t) + yj rik - ( d' + 7,. )y ~ 

~3 
g(xo, y, ro, z) < 0 

Having derived the linear and nonlinear bounding approximations (5), (6), (7), 
(11), (13), (14) and (18) for the nonconvex terms in (P1), a convex nonlinear 
underestimator problem (NLPL) for problem (P1) can be defined as follows. Valid 
bounds over the variables are generated from (3) and (4) to define the set ~t = 

_ _ y L  < < r L { x , y , r ' x  L < x < x ~, _ y _  yU _< r_< r ~} and the nonconvex terms 
in problem (P1) are substituted by the convex approximating functions. This then 
leads to the following convex nonlinear programming problem: 

iEI  j E J  iEP j E J  ~ 
L L L (i, k , m)  N s.t. xim >_ yLrik + rikY j -- YJ rik J, E 

Xim <_ yLrik + r~kyj yLr~ ( i , j , k , m )  E P Accordingto 

Xim --<~ y~rik + rLyj Y3"ri kI~ ( i , j , k , m )  E P Properties 1 to 4. 
xi___~ xU . 1 1 

rik ~-- yL + ~'~(~ yT) ( i , j , k , m )  E P 

_ + -;7,) ( i , j , k , m )  E P  
Y~ Yj 

rik  ~_ Xim X L 1 
a+b x im  + im(y ) ( i , j , k , m )  EPR  j a + bxim 

rik ~ xim + XUm( 1 1 ) ( i , j , k , m )  E PR 
a I + blxim Yj a t + btxim 

<_yirik + ( a + b y j ) y j - - y i ( a + b y j )  ( i , j , k ,  ra) E Ps  
<_ y~rik + (at +b'yj)yj  - y ~ ( a t  +b'yj)  ( i , j , k , m )  E PB 
>_yirlk + ( a + b y j ) y j - - y L ( a + b y j )  ( i , j , k , m )  E NB 
>_ y~rik + (a~ + b'yj)yj - y~(a' + b'yj) ( i , j ,  k, m) E N ,  

e L >_ (dyk + e) + yLrik -- (d + -~j)yj ( i , j , k , m )  E NR 

( i , j , k , m )  E NR 

(NLPL) 

(x, y, r) E gt, z E Z 
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where for the sake of simplicity the indices in the parameters a, a', b, b', d, d', e and 
d have been omitted. 

PROPERTY 7. The optimal solution f~ of (NLPL) provides a valid lower bound 
to the global optimum ( f*) of problem (P1). 

Proof. See Appendix C. 

COROLLARY 3. If  the value of the objective function from (P1) evaluated at 
the optimal solution of NLPL is JelL then this solution corresponds to the global 
optimum of (P 1). 

Proof. See Appendix C. 

4. A Branch and Bound Algorithm 

4.1. PARTITIONING SCHEME 

An optimal solution of problem NLPL provides a valid lower bound to the global 
optimum of problem (P1) (Property 7). At the same time this solution is a feasible 
solution to the problem (P1) since problem NLPL includes all the original con- 
straints. Hence, only an evaluation of the original objective function is required to 
obtain a valid upper bound. Also, the solutions of the bounding subproblems (3) 
and (4) provide a feasible solution that can be used to generate an upper bound of 
the global solution. When the lower and upper bound are equal, the global solution 
has been obtained (Corollary 3). If there is a gap between these bounds, a partition 
of the feasible region must be performed. The estimator functions can then be 
updated in each subregion to yield tighter lower bounds over each subregion. A 
spatial branch and bound search is performed to successively partition the feasible 
region along the coordinate directions of the variables. When the lower bound for 
a particular subregion is greater or equal than the best upper bound available, the 
subregion is discarded. Also during this search procedure feasible solutions are 
obtained with which the best upper bound can be updated. 

For partitioning the feasible region, it is necessary to select a variable over 
which the division of the space will be performed and its corresponding value. The 
first rule considered here is the same as the one used by Sherali and Alameddine 
(1992), only that now bilinear and fractional terms are present in the objective 
function. 

V It ) - -  Rule 1: (v, w, v', �9 arg max(i,j&m){Cij(rik vj )) 

i f v ' = O  t3v=~_Abs{c~j ( rvo  xv,j)} 
j YJ 

xi )) 
= A b s  

i 
if fly > / ~  select r~o else select y~ 
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i f v ' l = 0  / 3 v = ~ A b s { c v j ( r , j  xv0)} 
j YJ 

/3~ = ~ Abs {ci~,(ri~ x~0)} 
i Yw 

if/3~ >/3~ select x~,0 else select y~. 

In this way the nonconvex term for which the approximation differs the most is 
selected, and the variable that is involved in this term and can affect the most the 
other approximations is selected. A second rule that can also be used is as follows: 

Rule 2: (vl ,  wl ,  vl ' ,  vl")  E argmax(ij,k,m){Cij(rik -- Xi___~m )} 
Yj 

Xvl 
w = a Abs {cvl ~1 (rvl vl' vl"  )}  

Ywl 
select a (v, w, v', v") for which Abs (r , , ,  - x~r ) > 

Y~o 
proceed as in Rule 1. 

where 1 _> a > 0. This rule reduces to the first one when a = 1. There is a tradeoff 
between the two rules. Rule 1 may be attractive when the size of I I l, I I '  l, I J I 
or I j i  I is small because the variables that are present in more terms are selected 
and a smaller number of partition variables are used. In practice role 2 can be more 
useful since there are cases in which there are more than one term for which the 
difference in the approximation can be large. In this situation it may be useful to 
select a variable on which partitioning has not been performed previously because 
this allows for the tightening of its bounds. 

4.2. ALGORITHM 

Step O. Initialization 
(a) Set f"  = ~ ,  F = 0, select tolerances e and 7 
(b) For each variable xio, i E I,  yj, j E J, and rio, i E 1 I, yj, j E J~, and the 

terms x~0 i E I,  j E J,  determine: 

�9 lower and upper bounds by solving the bounding programs in (3) and (4). 
�9 Optional: obtain projections of the variables (as in (10), (12) and (16)) 

using either the solutions of the previous bounding problems or problems 
at a fixed level for the projection variable. 

�9 Evaluate the original objective function for each of these feasible solutions. 
If f < f* set f* = f and store the solution as the incumbent solution (*). 

(c) Store the bounds in ft ~ and set F = F U {0). 

Step 1. Convex Underestimator Problem 
(a) Solve problem NLPL for ft ~ to obtain fo. 
(b) Evaluate the original objective function f0. If f0 < f f  set f* = f0 and store 

the solution as the incumbent solution (*). 
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Step 
(a) 

(b) 

2. Convergence 
For the subregions j in F,  if f* - f~ <_ e f* delete subregion j from F ( F  = 
F\{ j} ) .  
If F = ~ the e-global solution is given by the incumbent solution. 

Step 
(a) 

(b) 

3. Partition 
Take the last region k in F (O k) and apply the selection rule (Rule 1 or Rule 
2). 
Subdivide subregion f~k in subregions f~k+l and f~k+2 by adding the respective 
bound or inequality. Delete subregion ~2 k from F and store subregions ft k+l 
andf~ k+2 i n F ( F  = (F \{k})  U {k + 1,k + 2}). 
Optional: Update the bounds in subregions k + 1 and k + 2 for the variables 
involved in the nonconvex term with the partition variable. 

Step 4. Convex Underestimator Problems 
(a) Solve problem NLPL for f~k+l and f~k+2 to obtain f~+l and fL k+2. 
(b) Evaluate the original objective function for each of these feasible solutions. 

If f < f*, set f* = f and store the solution as the incumbent solution (*). 
Optional: When the difference between the objective function of the convex 
underestimator problem NLPL and the incumbent solution f ' is smaller than a 
given tolerance ((f* - f L ) / f *  < 7), solve the original nonconvex problem 
(P) for ft k+l and/or ~2 k+2 using its convex solution as the initial point. If 
f < f* set f* = f and store the solution as the incumbent solution (*). 

(c) If f~+l < fLk+2 invert f/k+1 and f~k+2 in F. Go to step 2. 

It should be noted that when there is a strong interdependence between the variables 
involved in the nonconvex terms, it can be useful to update the bounds of some 
of the variables when a partition is performed (Step 3 optional). In particular the 
bounds of the variables that are involved in nonconvex terms with the partition 
variables can be updated. Also, the original nonconvex problem (P 1) can be solved 
over the corresponding subregion when the difference between the upper and lower 
bound are small to accelerate the convergence. 

The proposed algorithm can be used for the global optimization of linear frac- 
tional programming problems, bilinear programming problems or problems that 
involve fractional and bilinear terms in the objective function and in which the fea- 
sible region is convex. When the feasible region is described by linear constraints 
the bounding problems solved in the initialization step 0.b are LP problems. 

PROPERTY 8. The branch and bound algorithm will either terminate in a finite 
number o f  partitions at a global optimal solution, or generate a sequence o f  bounds 
that converge to the global solution. 

Proof. See Appendix C. 
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Fig. 2. Feasible region and contours for example (ALK). 

4.3. ILLUSTRATIVE EXAMPLE 

EXAMPLE 1. Bil inear objective. The formulation of the NLP underestimator 
problem and the performance of the algorithm is illustrated by solving the following 
example given in A1-Khayyal and Falk (1983). 

min f  = - x  + x y -  y 
s.t. - 6 x + 8 y _ < 3  

3 x - y < _ 3  
O _ x , y _ < 5  

(ALK) 

The feasible region with the original objective function is plotted in Figure 2. First, 
valid bounds are obtained for x and y by solving the corresponding LP's which 
yields: 

0 _< x, y _< 1.5. (19) 

From the solution of these LP problems the following two projected inequalities 
as in (12) can be obtained: 

3 + y  
x < - -  (20) 

- 3 

3 + 6 x  
y _< ~ (21) 

8 
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(b) 
Fig. 3. Feasible region and contours for underestimators by (a) A1-Khayyal and Falk, (b) 
proposed method. 

TABLE I. Computational results for Example 1 (or problem ALK) 

Method Size ~ Initial fL Initial f* Subregions Solution 

A1-Khayyal (3,4) -3.000 -0.750 >103 -1.0833 
Sherali (5,23) -1.500 -0.9375 11 - 1.0833 
Proposed (3,6) - 1.2569 -0.892 5 - 1.0833 

~'(n, m) n= no. of variables, m = no. constraints. 

The  NLP underestimator problem is then given by: 

m i n f z  = - x  + w -  y 
s.t. - 6 z + 8 y _ < 3  

3 x - y < _ 3  
w > 0  
w _ 1.5y § 1.5z - 2.25 (ALK')  

3 + y  3 + y  
> [ - - ] y  + 1 .5x-  15[---=-] 
- 3 ~3 + 6x . . . .  30+ 6x~ 

w > 1.5y + L~Jx - t.~t------ff---j 

0 < x, y _< 1.5 

The solution of  this initial NLPL is ~L = -1.2569 and the actual objective for this 
solution is f* = -0.892 which is the incumbent solution. The initial underestimator 
problems for the A1-Khayyal and Falk method and the one proposed here are shown 

in Figure 3. 
Since there is a gap between the lower  bound and the incumbent solution a 

partition is made selecting the variable x. The solutions of  problem NLP L at the 
two subregions are f {  = - 0 . 9 9 5 ( x  <_ 0.803) and f2  = - 1 . 1 7 6 1 ( x  >_ 0.803) 
and the incumbent  solution is f*  = - 1.0048. Therefore, the first subregion can be 
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eliminated. A new partition is performed in the second subregion with the variable 
y yielding f{  = -1 .0833(y _< 0.783) and f4 = -1.0807(y _> 0.783) with the 
incumbent being f* = - 1.0833. Hence, the global solution is found at x = 1.167, 
y = 0.5, f = -1.0833. The computational results for this example are given in 
Table I. The results for the methods proposed by A1-Khayyal and Falk (1983) and 
Sherali and Alameddine (1992) are reported in Sherali and Alameddine (1992). It 
is worth mentioning that for the initial LP underestimator problem in the method 
by Sherali and Alameddine (1992) the same initial lower bound fr is obtained 
using either the original bounds for the variables (x, y _< 5) or the tighter bounds 
(x, y _< 1.5). 

The total time required to solve the problem with the proposed algorithm, 
including the time for the bounding problems, is 0.75CPU secs. on a IBM/R6000- 
530 using MINOS 5.2 for solving the LP and NLP problems. 

This example has also been modified (Example la) to have an objective function 
that involves bilinear and fractional terms as in problem (P0): 

m i n f = - x + x y - y +  y 
X 

s.t. - 6 x + 8 y _ < 3  
3x-y<_3 
x+y>_l 
O_<x, y_<5  

(ALK1) 

Applying the algorithm, the initial convex NLPL problem has a solution of fo  = 
- 1 . 0 0  with x = 1.00 and y = 0.00, and the incumbent solution is f* = -1.00.  
Hence, the global optimal solution is obtained in this case without having to perform 
a spatial branch and bound search. 

5. Nonconvex Feasible Regions 

5.1. MATHEMATICAL MODEL 

The solution method presented for the nonconvex objective function defined over a 
convex feasible region in problem (P0) can be extended with some modifications to 
the case of nonconvex feasible regions. In this section an outline of the necessary 
modifications are given. Here the constraints that describe the feasible region 
can involve convex, linear fractional and bilinear terms in the same form than 
the nonconvex objective function in problem (P0). The problem considered is as 
follows (variable bounds are omitted): 

rain go 
s.t. ge _~ 0 g = 1 , . . . , L  

iEI j E J  qJ iEP j E J  ~ 

g = O, 1 , . . . , L .  

(P2) 
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Problem (P2) can be reformulated in the same form as (P1) yielding, 

mingo 
s.t. ge < 0 ~ = 1 , . . . , L  
yjrik >_ xim ( i , j , k , m )  E P 
yjrik < Xim ( i , j , k , m )  E N 

where ge E E e ~ z), = -- Cij X i j  

i E I  j E J  i E F  j E J  I 

s = O, 1 , . . . , L .  

(P3) 

The same type of transformations and estimator functions that were presented 
previously are used for every function ge(s = O, . . . ,  L). 

5.2. MODIFICATIONS AND EXTENSIONS 

Several modifications are required in the algorithm presented earlier to handle 
nonconvex feasible regions. Firstly, the solution of the nonlinear convex problems 
are not necessarily feasible solutions and they cannot always be used to update the 
upper bound. For this reason the original nonconvex problem (P2) can be solved to 
ensure that an upper bound is available during the search. In this work the solution 
of the first convex problem NLPL is used as an initial point. To update the upper 
bound additional nonconvex problems can be solved during the search. 

Secondly, to generate the lower and upper bounds of the variables there are 
different options. One is to simply consider the subset of convex constraints to 
generate these bounds. Alternatively, the nonconvex terms present in the constraints 
can be substituted by the linear estimator functions (5)-(6). This allows to consider 
the possible interactions between all the variables. The bounding subproblems can 
be solved in parallel since they are independent. In the case that they are solved 
in a sequential form the bounds that are obtained can be used in the subsequent 
subproblems if these variables are involved in estimator functions of nonconvex 
terms since better approximations will be obtained. 

Finally, a modification of the branching rule is also necessary. The coefficients 
of the nonconvex terms in the constraints are not sufficient for comparing the 
approximations since the constraints can be scaled up or down by constant factors 
affecting in this form the selection of the term. This problem can be avoided by 
including the Lagrange multipliers of the constraints along with the coefficient 
of the nonconvex term in the selection rule. In this form the selection rule when 
nonconvex terms are present in the constraints and objective function is as follows: 

Rule 3: (vl ,  wl ,  vl ' ,  v l")  E arg max(i,j,k,~){Aec~j(rik - -~-j-)} e = 0,. , L 

proceed as in Rule 1 or Rule 2. 

This rule has the advantage that when different expressions of the same constraint 
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< ' ~ e a s . i b l e  

Fig. 4. Disjoint feasible region for Example 2. 

(as in 23 and 25) are included in the formulation, only the constraint that is active 
()~ > 0) is considered when selecting the partition variable. 

An important difference between having the conconvex terms only in the objec- 
tive function or in the constraint is that there are alternative representations of 
the nonconvex constraints. Depending of the individual bounds of each particular 
nonconvex term, different representations may be tighter or nonredundant. 

Consider the following nonconvex constraint: 
n 

zj <_ XlX2 (22) 
j=l  

which can also be written as follows 
Z 

- -  ~ X 2 (Z < XlX2) (23) 
Xl 

n 

z = ~ zj. (24) 
j=l  

With (23) and (24) it is possible to develop nonlinear overestimator functions over 
the fractional term, Z/Xl.  If the bounds are nonredundant, linear underestimators 
can also be obtained. These estimators give exact approximations at the lower and 
upper bounds of the variables involved in the estimators function (x 1, x2 and z). 

The constraint in (22), however, can also be expressed as, 

~ Z_.~j ~ 3:2 (25) 
j=l  xl  
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TABLE II. Size and characteristics of example problems 

Example Total no. Nonconvex Nonconvex Constraints Feasible Terms 
variables var. terms region 

1 2 2 1 2 C B 

la 2 2 2 3 C B,F 
2 4 4 4 6 N B,F 
3 6 4 2 5 C F 
4 7 4 2 9 C F 
5 6 4 2 6 C F 
6 4 4 4 6 C B 
7 4 3 2 3 C B 
8 2 2 1 1 N B 
9 4 4 2 4 N B 

10 9 6 2 6 N B 
11 10 7 5 7 N B,F 
12 20 14 7 16 C F 

C=convex, N=nonconvex; B=bilinear, F=fractional 

and nonlinear underestimators can be generated over each fractional term, zj/Xl.  
These estimators provide exact approximations at the lower and upper bounds of 
each variable zj and which are nonredundant. There are points for which each 
variable zj is at either of its bounds and x L < x 1 < X] z, X L < X 2 < X~ and Z L < 

z < z ~'. For this point, representation (23) cannot yield an exact approximation 
while the representation (25) is exact. 

5.3. ILLUSTRATIVE EXAMPLE 

EXAMPLE 2. Nonconvex feasible region. The following example has a feasible 
region that is disjoint (see Figure 4). The problem is given by: 

m i n f  = - x l  - 2x2 - Yl - 2y2 

s.t .  XlYl <_ 10 
x2Y2 ~_ 10 
2 X 1 + 2 y l  >_ 13 

15X2 q- 20y2 >_ 87 

Yl  < 2X2 
Xl 
Y2 _< 2xl 
X2 
0.5 _< xl _< 5 
0.5 <_ x2 __. 4 
0.5 < Yl ~ 10 

0 . 5 < y 2 < 3  
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TABLE III. Computational results for examples 

Example Initial lower Initial upper Global Number of 
bound bound solution subregions 

1 - 1.2569 -0.892 - 1.0833 5 
la -1  -1  -1 1 
2 -23.8 -23.06 -23.06 3 
3 -5.053 -4.9919 -5.0 3 
4 -2.47 -2.47 -2.47 1 
5 1.5953 1.625 1.6231 3 
6 -13 -13 -13 1 
7 - 6  - 2  -4.5 3 
8 -6.66 -6.66 -6.66 1 
9 2.8284 2.966 2.966 5 

10 -500 -400 -400 3 
11 -2824 -1161 -1161 53 ~ 
12 126.91 131.87 127.01 3 

~Not solved to optimality. Tolerance 5%. 
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The first convex underest imator problem has a solution of  f o  = - 2 3 . 8 .  Using 
this solution as a starting point, the original nonconvex problem is solved to obtain 
an upper bound. This yields the incumbent solution with an objective function of  
f*  = - 2 3 . 0 6 .  The variable Yl is selected for partitioning (Yl = 8.944) since it 
is over  its terms that the approximations are not exact. The two new subregions 
have solutions that are greater or equal than the incumbent solution and the global 
solution is x l = 1.118, x2 ---- 4, Y l = 8.944 and Y2 = 2.5 with f*  = -23 .062 .  

6. Computational Results 

In this section the global optimization of  linear fractional, bilinear and polynomial  
problems is considered with the proposed algorithm. Size and characteristics of  
these problems are given in Table II. Examples 3, 4 and 5 are fractional programs, 
Examples  6, 8, 9 and 10 correspond to bilinear problems, Example 7 is a polynomial  
problem that can be reformulated as a bilinear problem, Example 11 involves both 
bilinear and fractional terms and Example  12 is a larger fractional program. The 
computat ional  results are given in Table III. As can be seen 4 out of  the 12 
examples only required the solution of  one convex NLP underestimator problem. 
Except  for  Example  11, the computational requirements were very modest. The 
bounding subproblems, nonconvex subproblems and the convex NLP subproblems 
were solved using MINOS 5.2 through GAMS on a IBM/R6000-530. The total 
t ime requirements for the underestimator subproblems was less than 1 cpu sec. 
except  for Problem 11 that required 10.3 sec. For the initialization step the total 
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time requirements were also less than 1 cpu sec. Details on the examples are given 
below. 

Also, in some of these examples (Examples 9 and 10) it was not possible 
to generate nonlinear estimators and only the linear estimators were employed. 
Nevertheless, the algorithm presented here and the modifications to the branching 
rule (Rule 2 and 3) allowed fast convergence by using a different variable to 
partition on. 

EXAMPLE 3. Linear fractional objective. The formulation for this example from 
Falk and Palocsay (1992) is given by: 

37Xl + 73x2 + 13 
m a x f  = 13xl + 13x2 + 13 
s.t. 5xl - 3x2 = 3 

1.5 _< Xl _< 3 

63xl - 18x2 q- 39 + 
13xl + 26x2 + 13 

(FAD 

Introducing the additional variables, ff~ and zi, and constraints to express the 
objective function as a sum of linear fractions of single variables yields, 

min f - Yl Y2 
Zl z2 

s.t. Yl = 37x~ + 73x2 + 13 
Zl = 13Xl + 13x2 + 13 
Y2 = 63Xl -- 18x2 + 39 (FAI') 
z2 = 13xl + 26x2 + 13 
5X 1 - -  3X 2 ----- 3 
1 . 5 < x 1 _ < 3  
y , z > O  

Since this is a minimization problem and all the coefficients are negative, it is not 
possible to use the nonlinear underestimators (7) of the fractional terms. Bounds 
are generated for all the variables and it is possible to identify a projection for the 
first fractional term that can be used to generate an additional estimator 

Yl -59 .948  
- -  = rl _< - -  + 4.5764. (26) 
Zl Zl 

The first convex underestimator problem has a solution of fo  = -5 .053 with the 
ratio terms r = ( -3 .825 ,  - 1.228). The exact objective function is f* = -4 .9919 
and it is the incumbent solution. The approximation for the first term is exact, 
so the second term (r2 = ~2) is used for partitioning the feasible space and 
an update of the bounds for Y2 and z2 is done. Two subregions are considered 
using the value of the incumbent solution to partition. The first one has a solution 
of f{  = -4 .98  (r2 >_ 1.1394) and it can be discarded, the second one has a 
solution of f2  = _ 5.0002 (r2 _< 1.1394). This subregion is 0.004% within global 
optimality. At this point the algorithm can stop or if an extra partition is done the 
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global solution with an objective function of f* = - 5 . 0  is found exactly with 
Xl = 3.0 and x2 = 4.0. It should be noted that Falk and Palocsay (1992) required 
20 iterations to solve this problem. Also, the method proposed by A1-Khayyal and 
Falk (1983) can be used to solve this problem. The nonconvexites are formulated 
as bilinear terms and bounds are obtained for the variables ri (e.g. r L = yL 1/z~). 
The solution of  the relaxed problem is -6 .288 and the initial gap is 26%. 

EXAMPLE 4. Linear fractional objective. For the next example taken from Falk 
and Palocsay (1992) a similar transformation is necessary. The problem is given 
by: 

rain f - Yl ?12 
Zl 22 

s.t. Yl = 3xl + x2 - 2x3 + 0.8 
Zl = 2 x l  -- x2 -[- x3 

Y2 = 4xl - 2x2  + x3 

Z2 ---- 7Xl + 3x2  -- x3 
Xl + x2 - x3 _< 1 (FA2) 

- Xl  + x 2 -  x 3  < - 1  

12xl + 5x2 + 12x3 < 34.8 
12Xl + 12x2 + 7x3 < 34.8 
- 6 x l  + X2 -[- X3 < - 4 . 1  

X 1 _> 0,  X 2 _> 0, X3 _> 0 

The global optimal solution is xl = 1, x2 = 0, x3 = 0 and f* = -2 .47.  Falk 
and Palocsay (1992) obtained the global solution in one iteration. In the case of 
the  method by AI-Khayyal and Falk (1983), the relaxed solution is -3 .179 with an 
initial gap of 38%. 

EXAMPLE 5. Linear fractional objective. This problem is also taken from Falk 
and Palocsay (1992) and the formulation after the addition of extra variables is 
given by: 

min f = y_[1 + Y! 
Zl z2 

s.t. Yl = -Xl  + 2x2 + 2 
zl = 3Xl - 4x2 + 5 
Y2 ---= 4Xl  -- 3x2  + 4 
z2 = -2Xl  + x2 + 3 (FA3) 
X 1 ~-X 2 <~ 1.5 

Xl ~ x2 

0 _ < X l _ < l  

0 _ < x : _ < l  

For this example a solution within e = 0.07% of the global optimal xi = 0, x2 = 
0.284 and f* = 1.6231 is obtained. Falk and Palocsay (1983) required more than 
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Fig. 5. First underestimator for polynomial problem (example 7). 

12 iterations and for the method by A1-Khayyal and Falk (1992) a relaxed solution 
o f  1.385 with an initial gap of 46% is obtained. 

EXAMPLE 6. Bi l inear  object ive.  T h e  next example is a bilinear problem taken 
from Visweswaran and Floudas (1990) and the formulation is given by, 

m i n  f = x l  - x2 - Yl - -  XlYl  q- x lY2 -]- x2yl  -- x2y2 

s.t. xl + 4x2 < 8 
4xl + x2 < 12 
3Xl+4X2<_ 12 
2yl + Y2 < 8 
Yl + 2y2 <_ 8 
Yl + Y2 _< 5 
Xl~X2~Yl~Y2 >_ 0 

(FL1) 

The global optimal solution corresponds to x l = 3, x2 = 0, Yi = 4, Yz = 0 and 
f* = -13 .  Visweswaran and Floudas (1990) required 3 iterations to obtain the 

global solution. 

EXAMPLE 7. Polynomia l  objective.  T h e  next problem is a polynomial problem 
taken from Visweswaran and Floudas (1991) and the formulation is: 

m i n f  = - 6 y + 4 . 5 y  2 y3 - (FL3) 
0 _ < y < 3  
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The feasible region is convex and the only nonconvex term is the one with the 
cubic term. The problem can be reformulated as: 

m i n f  = - 6 y  + 4.5y 2 -  x3 
s.t. x3 < x2y 

X2 < x l y  

X l = y  
O<_xl <_3, 0<_x2<_9, 0 ~ x 3 < 2 7 ,  0 ~ y < 3 .  

(FL3 I) 

The original objective function and the approximation are plotted against the origi- 
nal variable in Fig. 5. The global optimal solution is at y = 3 with f* = -4 .5 .  The 
method by Visweswaran and Floudas (1991) required 4 iterations in this problem. 

EXAMPLE 8. Bilinear constraint. Consider the small example presented by Sahini- 
dis and Grossmann (1991) where the formulation includes a bilinear constraint, 

min f = - x  - y 

s.t. xy < 4 
0 < x < 6  
O___y_<4 

(FL2) 

The global optimal solution is at x = 6, y = 2/3 and f* = -6.66.  

EXAMPLE 9. Bilinear constraint. The next small example is taken from Lo and 
Papalambros (1990). Here the model is given by: 

m i n f  = 2xl + X2 

1 
s . t .  - -  - x 2 _~ 0 

X2 
x l y l  + x2Y2 >_ 0 

Xl = Yl 

x 2 = Y 2  
0.1 < x , y  <_ 2.5 

The global solution is xl = 0.517, X 2 = 1.932 with f* = 2.966. 
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EXAMPLE 10. B i l i n e a r  cons tra in t .  The following example is taken from Lasdon 
et  al. (1979) and Swaney (1993), 

m i n f  = 6Xl + 16x2 + 10x4 - 9x5 + 10x7 - 15x8 
s.t. Xl + X 2  - -  X 3  - -  X 6  = 0 

0 . 0 3 X l  -t- O.Olx2 -- x 3 x  9 --  x ,6x  9 = 0 

X3-~- X 4 - -  X5 ~-- 0 

x 6 + x 7 - - x 8  = 0  
X3X 9 + 0.02X4 -- 0.025X5 _ 0 
X 6 X  9 + 0.02X7 -- 0.015X8 _< 0 
X ~_ 0,  X 1 ~_ 300, X 2 ~ 300, x3 _< 100, X 4 _~ 100, 
x5 < 100, X 6 _< 200, x7 < 200, x8 _< 200 
0.01 < X 9 <_ 0.03 

The global solution is located at X 3 ---- 0, X 6 ---- 100 and x 9 ---- 0.01 with f* = -400 .  
Swaney (1993) required the solution of 2 NLP's and 4 LP's to obtain the global 
solution. 

EXAMPLE 11. B i l i n e a r  a n d  f r a c t i o n a l  cons tra in ts .  T h e  last example is the mathe- 
matical model for an alkylation plant and is taken from Liebman et  al. (1986). The 
model is: 

m i n f  = 5.04xl + 0.035x2 + 10x3 -t- 3.36x5 - 0.063x4x7 
s.t. Xl = 1.22x4 - x5 

x9 + 0.222x10 - 35.82 = 0 
3 x 7 - x 1 0 -  1 3 3 = 0  
x7 _< 86.35 + 1.098x8 - 0.038x82 + 0.325(x6 - 89) 

X4X9 -t- lO00x3 -- 9800 x3 = O; 
X6 

X 2 + X 5 -- XlX 8 = 0 

1.12 + 0.13167X8 -- 0.00667X82 -- X4 _> 0 
Xl 

1 _< xl _< 2000, 1 < x2 < 16000,0 < x3 < 120, 
1 < X4 _< 5 0 0 0 ,  0 ~ X5 ~ 2000, 85 < X6 _< 93, 
9 0 < x 7 < 9 5 , 3 _ < x 8 _ <  12, 1 . 2 _ < x 9 < 4 , 1 4 5 _ < x 1 0 <  162. 

Tighter bounds for the variables are obtained by solving the bounding subproblems. 
The nonconvex equality is substituted with two inequalities. In this formulation it 
is possible to rewrite some of the constraints. In particular, it proves to be useful to 
rewrite the sixth constraint in the following forms: 

x5 x2 n t- x 8 = 0 
Xl Xl 
X2 _{_ X5 
- -  - - - - x  1 = 0  
X8 x8 
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The first convex problem has a solution of fo  = - 2 8 2 4  and using this solution as 
an initial point for solving a nonconvex problem an upper bound of f u  = _ 1161 
with r = 2000 is obtained and corresponds to the global solution. After 53 nodes 
the solution is proven optimal within a 5% tolerance. 

EXAMPLE 12. Linear fractional objective. This formulation corresponds to a 
heat exchanger network in which the objective is to minimize the total area. The 
arithmetic mean is used for calculating the temperature driving force (see Quesada 
and Grossmann, 1992), 

m i n f -  50Qll  70Qll  5Q21 20Q22 2QH1 50Qgl 100Qc2 
z~Tl------ ( + ATI---~ + ~ -}- AT2---~ -}- ATH----~ -}- ATc------- ~ -}- ATc---------2 

s.t. Ql l  + Q12 = TCll - 300 
Q12 + Q22 = Tc12 --  TCI1 
QH1 = 4 0 0 -  TCl2 
Oc1 = 1.5(TH1, -- 310) 
Qll  = 1.5(THI2 -- THII) 
Q12 = 1 .5 (410 -  TH12) 
Oc2 = 1.5(TH21 - 300) 
O21 = 1.5(TH22- TH21) 
Q22 = 1 .5 (420-  TH22) 

T H 1 2  --  T C l l  + T H l l  --  300 
A T l l  = 

410 - TG12 - ~ T H 1 2  - TCl l  
ATI2 = 

2 
T H 2 2  -- TCl l  S'~ TH21  --  300 

AT21 = ' 3  
420 - Tc12 - ~ T H 2 2  - TCl l  

AT22 = 
2 

450 - 400 +-450 - Tc12 
A T H 1  = 

2 
310 - 285 + TEll  -- 295 

ATc l  = 
2 

300 - 285 + T H 2 1  - -  295 
ATc2 = 

2 
Q, AT,  T>_O. 

The global optimal solution is Q21 = 100, QCl = 150 and Qc2 = 80 with 
f = 127.01. 

7. Conclusions 

An algorithm for the global optimization of linear fractional and bilinear program- 
ming problems has been proposed that relies on the solution of nonlinear convex 
underestimator problems which result from substituting the nonconvex terms by 
linear and nonlinear estimator functions. Conditions under which these functions 
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are nonredundant have been established. It has also been shown that additional 
valid estimator functions can be obtained through projections from subproblems 
for tightening the variable bounds. Thirteen examples have been solved using the 
proposed method, showing that strong lower bounds are obtained in most of the 
cases. This greatly reduces the enumeration of nodes in the spatial branch and 
bound search with which the computational requirements are kept small. To estab- 
lish more definite trends, however, extensive numerical comparisons with other 
methods should be performed on larger test problems. 

Appendix A. Example of Formulation (P1) 

Consider the following example for problem (PO): 

m i n f  = Cll pl + c21 p2 - c22p2q2 
ql ql (A.1) 

s.t. g = alPl + a2P2 + fllql + f12q2 + 7 z + ~ <_ 0 

in which the variables Pl, P2, ql, q2 and z are specified with bounds and O1, c21 
and e22 > 0. 

The estimator functions used in Section 3 can be applied directly to (A.1). 
However, for general presentation purposes problem (P0) will be transformed to 
(P1). The condition of disjoint variables between the linear fractional and bilinear 
terms can be achieved by introducing the new variable P3, P3 = P2. The last term 
of the objective in (A.1) then becomes, -r q2 with r = c22. 

Defining the new variables for the fractional terms as in (1) yields: 
P...L1 P2 x l o = P l ,  x20=P2, Yl = q l ,  r l l =  q1'r21= ~ .  (A.2) 

Defining the new variables for the bilinear terms as in (2) yields: 

x32 = P3q2, Y2 = q2, r30 = P3 (A.3) 

Substituting (A.2) and (A.3) in (A.1) and adding the condition P3 = P2, the 
reformulation (P1) is given by; 

m i n f  = C l l r l l  -~ c21r21 -- c32x32 

s.t. ylrl l  >_ Xl0 
ylr21 >_ x20 (A.4) 
yzr30 >_ x32 

OqXlO -~- 0~2X20 + ~IYl  q- /32Y2 + ")'Z q- ~ < 0 

r30 -- x20 : 0 

Appendix B. Estimators for Factorable Functions 

A concave overestimating function of a product of functions is given by (McCormick 
(1983)), 

f ( x )g (y )  <_ min[fUCa(y) + gLCy(x) - f~gL, fLCg(y ) 

q_ gUCf(x) _ fL  gu] (B.1) 
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where f~', g~, f z  and g i  are positive bounds over the functions f ( x )  and g(y) 
such that: 

0 <_ f L  < f (x)  <_ fu  (B.2) 

0 <_ gL <_ g(y) < gU (B.3) 

and Cy(x)  and Cg(y) are concave functions such that for all x and y in some 
convex set: 

Cy(x) > f ( x )  (B.4) 

Cg(y) >_ g(y) (8.5) 

In a similar way as in (B.1), the convex underestimating function of a product of 
functions is given by: 

f ( x )g ( y )  > max[fUcg(y)Wg~cf(x)- f~  g ~', fLcg(Y)TgLcy(x) - - fL  gL](B.6) 

and c](x) and cg(y) are convex functions such that for all x and y in some convex 
set: 

c f (x)  < f ( x )  (B.7) 

cg(y) < g(y). (8.8) 

In the case of bilinear functions ( f ( x )  = x and g(y) = y) the individual concave 
and convex bounding functions of each individual term are given by the function 
itself: 

Cs(x ) = x = cs(x ) (B.9) 

Cg(y) = y = %(y). (B.10) 

Thus, from (B.1) and (8.5) the following under and over estimator functions are 
obtained: 

xy > max[xLy + yLx  -- xLy  L, xUy q- yUx - xUy u] (B.11) 

xy < min[xn y -4- yU x - xL y u, xUy q- yL x -- x u yL]. (B.12) 

For fractional linear terms ( f ( x )  = x and g(y) = 1/y), it is possible to generate a 
convex underestimator function because the individual convex bounding functions 
are given by 

c](x) = x (B.13) 

%@) = 1/y. (B.14) 
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Nonlinear 
s t imator  

I 

1 

Fig. 6. Comparison between linear and nonlinear estimators (5a) and (7a) of the linear 
fractional terms in (P0). 

From (B.6) the underestimator function can be expressed as: 

x_> x ~,1 1 , x  ~ 1 
Y max[~- E + x ( y  - -~Z) ~ + xL(  -- ~-~)] (B.15) 

The estimator functions (B. 11), (B. 12) and (B. 15) have the property that they match 
the original function when one of the variables is at a bound. This is because the 
individual convex and concave bounding functions in (B.9), (B.10), (B.13) and 
(B.14) are the functions themselves. 

Appendix C. Mathematical Properties and Proofs 

PROPERTY 1. When r L = ~m (or r~k = =~'~ ( i , j , k , m )  �9 PR, the linear Y~ Yj 
overestimator (5a) (or (5b)) is a linearization o f  the nonlinear underestimator (7a) 
(or (75)). 

Proof. Consider the linear ovemstimator (5a) 

Xim < u L u L _ yj rik + rikyj -- Yj rik. (C.1) 

Rearranging (C.1) leads to: 

rik >_ Xim r i y i  + r L .  (C.2) 

Using the condition that r~ = @ ,  equation (C.2) yields 
i 
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The nonlinear underestimator (7a) gives rise to the constraint 

rik >__ xi,~ + XLm( 1 1 ) .  (C.4) 
y~ yJ yj 

The first term of equations (C.3) and (C.4) is the same. Now compare the nonlinear 
term NT(yj) = ( 1 1 - ~ )  from(C.4) with the linear term ( ~ - yr ) from equation 

(C.3). Both terms are equal at y~. Furthermore, a linearization of the nonlinear term 
at yj = y~ yields the linear term: 

1 1 yj 
NT(y2) + % j N T ( g ) ( y j  - yj') - (y~,)~(yj - y~') - YJ' ( y ~ .  (C.5) 

Thus, (5a) is a linearization of (7a) and in a similar form it can be proved that for 
xu 

rUk = ..-:~, (5b) is a linearization of (7b). �9 
uj 

COROLLARY 1. The nonlinear underestimator (7a) (or (7b)) is stronger than the 
X$ t , , 

linear overestimator (5a) (or (5b)) when r~ = zZ-~y2 (or r~k = - ~ ) ,  (~,3, k, m) 

PR. 
Proof. From Property 1 and the fact that the nonlinear underestimators in (7a) 

are convex in yj, any linearization is a supporting hyperplane (see Figure 6). �9 

L x?m 
z~m (or r~k < ..-:7c-), ( i , j , k ,m)  E PR, the linear PROPERTY 2. When r L > 
Y j  ~: 

overestimator (5a) (or 5b) is nonredundant. 

x__~ = v/~, with Proof. Consider a feasible point with X+m and y+ such that y]. 

x+m > x~m and y+ < y~. 

§ + Evaluating the linear overestimator (5a) a t  ( X i m  , y j  ) and rearranging it as in 
(C.2) yields: 

+ L + L + L + 
rik >_ xi  m rikY j + rL _ rikY j --vriko_____2_3 + r L. (C.6) 

The linear overestimator for that point then reduces to, 

r~k > r~. (c.7) 

The nonlinear underestimator (7a) for this point is, 

r~k > x~,,  + x~,~( - ). ( c . s )  
- y2 y2 
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Linear 
�9 ~ m a t o r  
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km 
Fig. 7. Comparison between linear and nonlinear estimators (5a) and (7a) of the bilinear 
terms in (P0). 

z+m = r~, for expressing (C.8) in terms of r~  yields and using the relation 

x L XLm 
rik >_ (~j + )ri  (C.9) 

Xim Y~ 

Defining a = and/3 = ~ ,  the equation (C.9) can be expressed as 
~ m  

rik >_ [c~ + tilt L -c~flr L = rL[a + / 3 ( 1 -  a)] (C.10) 

S i n c e 0 _ < a <  l a n d 0 _ < / 3 <  1, 

1 = a + (1 - a) > a +/3(1 - a) = r (C.11) 

the nonlinear underestimator reduces to, 

rik>_r L, r  1. (C.12) 

Comparing (C.7) and (C. 12), it follows that the linear overestimator (5a) is stronger 
at the point (xi + ,  y+) and therefore nonredundant. �9 

PROPERTY 3. When XLm = rikY L (or XUm = ri~Y~), (i, j, k, m) E PB, the linear 
overestimator (5a) (or (5b)) is a secant of the nonlinear underestimator (7a) (or 
(7b)). 

Proof. The nonlinear underestimator (7a) 

L l 1 rik >_ Xim + xi'~ ( _ ) (C.13) 
yJ 
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can be expressed as: 

�9 ~m - y 2 ~  - x~m + - -  

L u 
XimY~ 

Yj 
_< O. (C.14) 

Using xLm L L = rikY ~ 

u L 

X~m -- y~r~k + r ~ (  y3yj y2) < 0. 
Yj 

The linear overestimator (5a) is given by 

Xi m < u L u L _ y j  r i k  + r i k Y  j --  y j  r i k  

that can be expressed as: 

u L u 
Xim - YJ rik + rik(y J - yj) < O. 

(C.15) 

(C.16) 

(C.17) 

The difference between both equations (C. 15) and (C.17) is in the last term (Y~Y~ - 

yL) versus (y~ -- yj). Both terms are equal at the extreme values yj = yL and 
~ J  

yj = y~. Since the nonlinear term is convex and the linear one matches its value 
at the extreme points the latter is a secant of the nonlinear estimator. �9 

COROLLARY 2. The linear overestimator (5a) (or (5b)) is stronger than the 
nonlinear underestimator (7a) (or (7b)) over the feasible region when xL = r ik Y L 

(or X~m = ri~y~), (i, j ,  k, m)  E PP. 
Proof. This follows trivially from Property 3 and the fact that the nonlinear 

underestimator (7a) is convex (see Fig. 7). �9 

L L u u PROPERTY 4. When xL,~ > rikY ~ (or X~m < rikY j ), (i, j ,  k, m)  E PB, the 
nonlinear underestimator (7a) (or (7b)) is nonredundant. 

zrn + Proof. Consider a feasible point ( r + , y  +) such that r+y + = x -L , rUk > rik > 
+ 

r L and X~m > Xim > XLm . The nonlinear underestimator (7a) for this point gives: 

+ > x i~  + x L (  1 1 

yielding 

Xim  -- XLm < r + 
- -  ik y :  

which in turn implies 

x~.~ _ x~.~. 

x~.~ + + r i k Y  j - - x ~  m 

y? - 0 ( C . 1 9 )  

(c.2o) 
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Now consider the linear overestimator (5a) for the same point: 

u L 
~,u,,+ L + u L y j  Xim 

Xim <_ yj ik § rikYj -- yj rik -- y? 

which yields, 

u y j  ri  k L /Y j  § rL  u L 

_ . _ _  + o + r  + )" Xim < ~zm( y+ rik Yj ik 

L L u L + 
_ _  r ikXim Yj r ikr ik  

+ 
§ ri+h rik 

(C.21) 

(C.22) 

yU r~ 
Defining a = ~ > 1 and/3 = ~ < l, equation (C.22) reduces to: 

Xim <_ xL,~(/3 + a(1 --/3)) = xL,~(1 - 1 + f l - -  (~(/3-- 1)) 

= xLm(1 § 1)(1-- a)) (C.23) 

Since (/3 - 1) < 0 and (1 - c~) < 0, Xim <_ ~XLm with ~ > 1. The comparison 
with the other linear overestimator (5b) is equivalent and also yields Xim < ~xLm, 
which in turn implies that the nonlinear underestimator (7a) is stronger at (r + , y+). 

PROPERTY 5. The nonlinear inequality (11 a) (or (11 b)) is a valid convex underes- 
timator when b < 0 (or b ~ < 0), and is nonredundant with respect to the nonlinear 
underestimator in (7a) (or (7b)). 

Proof. For the first part of the proof constraint (10) can be expressed as, 

1 1 
_> 0 (C.24) 

y j  a + bx im 

Multiplying by the lower bound constraint (Xim - xLm _> 0) yields the valid 
inequality, 

1 1 
(Xim - XLm)(yj a + bxim ) > 0 (C.25) 

Rearranging yields: 

XLm Xim 1 
> + - 

yj - y--j- + bxim ) (C.26) 

which corresponds to the nonlinear underestimator (11). The Hessian matrix of the 
underestimating function in (1 l) is given by 

2b(a + bxLm) 0 

(a + bxim) 3 
0 2xL~ (C.27) 
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The term (a + bxim) is positive over the feasible region since, 

a + bxi~ >_ yj > 0  

and hence, 

2b(a + bxLm ) 

(a -F bxim) 3 

Also for xLm > O, 

- - > 0 .  

(c.28) 

> 0 if b < 0. (C.29) 

(c.30) 

If xLm = 0 equation (C.26) reduces to the convex inequality (b < 0), 

Xim 
rik > (C.31) 

-- a + bxlm 

Therefore, if b < 0 the Hessian matrix (C.27) is positive definitive and the function 
is convex. 

Now consider a feasible point (x + ~ +) ira, Yj in the strict interior such that y+ = 
u + a + bx+m and yL < y+ < yj and xL~ < xim < x~,~. Equation (11) for the 

nonlinear underestimator with projection reduces to, 

~+ 1 
X+m > X+m XLm( a + bx+m 
y~ - a + b x +  + �9 _ ) _ 

+ 1 1 Xim 

Xim yj_ (c.32) 

and is therefore an exact approximation of the linear fractional term. Since y+ 
does not lie in the boundary defined by the bounds of the variables X~m and yj the 
nonlinear underestimator (7a) yields, 

XLm Xlm+ _ XLm XLm + XLm + Xim -- Xim 
Y+ + Y3% < --Y+ + Y+ - --y+ (C.33) 

which is a strict inequality. The other nolinear underestimator (7b) for this point 
yields, 

Xim + Xim X+m 1 l_l._) + 1 1 )  + 
+ X~m(y+__ yL < + --< (C.34) 

which is a strict inequality. Hence, the projected nonlinear underestimator (11) is 
stronger than the nonlinear underestimators (7) for the point (x+m, y+). �9 

PROPERTY 6. The additional estimators in (13), (14) and (18) provide an exact 
approximation at the boundary defined by the projected cut. 
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Proof. In the same spirit as the proof for Property 5, select a point for which 
the projected inequality is a strict inequality and for which the variables are not at 
their bounds. �9 

Property 7. The optimal solution f~ of(NLPL) provides a valid lower bound to the 
global optimum ( f* ) of problem (P 1). 

Proof. Any feasible point (x, y, r, z) for problem (NLPL) is also a feasible 
solution to problem (P1) since the inequalities g(xo, y, r0, z) <_ 0 are identical in 
both problems. Since the approximating functions in (NLPL) represent a relaxation 
of the bilinear inequalities in (P1), they have the effect of underestimating the 
objective function C of problem (P 1). Thus, it follows that at a given feasible point 

fL<_f .  
For the global optimum (x, ,  y , ,  r,~ z*) of problem (P1) it then follows that 

f* >_ f~ where f~ is the objective of NLPL evaluated at that point. Since f~, 
the optimal solution of NLP L is unique due to its convexity, f~ >_ f~, and thus 

f*>_f~.  �9 

COROLLARY 3. I f  the value of the objective function from (P1) evaluated at 
die optimal solution of NLPL is f~ then this solution corresponds to the global 
optimum of (P1). 

Proof. If f~ is not the global optimal solution of problem (P) then there exists 
a global solution f* < f~. But by Property 7, f~ _< f* which contradicts the 
assumption that f~ = f '  is a solution to NLPL. �9 

PROPERTY 8. The branch and bound algorithm will either terminate in a finite 
number of partitions at a global optimal solution, or generate a sequence of  bounds 
that converge to the global solution. 

Proof. Given the branch and bound procedure, there are two possibilities. In 
the first one, at a given node the lower bound fL of the underestimator NLPL is 
identical to the original objective function in which case the algorithm terminates 
in a finite number of partitions. 

In the second possibility an infinite sequence of partitions is generated. This in 
turn implies that there is a subregion that is being infinitely partitioned. Let the 
sequence of solutions be denoted by (k') and ( = (z, y, r, z). By the termination 
criteria it is known that, 

f~,,k' _ fLk' > 0. (C.35) 

Since the upper bound is at least as strong as the evaluation of the actual objective 
function for the current solution (k, 

f ( (k ' )  _ fL((k')  >_ ff,,k' _ f~' > 0 (C.36) 
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there must  exist at least one nonconvex term, +, for which its feasible region is 
infinitely partitioned. By the partition rule 1, 

+ 
X ira X im (yj-  -< 

yj ik 
(C.37) 

Summing up over  all the nonconvex terms, t, it follows that 

tCX +m t y+ - r+)  >- f ( ( k ' ) _  f L ( f k ' )  >_ f u , k ' _  f ~ ' >  O. (c.38) 

The variables for the nonconvex term (+) have some bounds defining an interval. 
Since the partition is of  the same nature as the one used by A1-Khayyal and Falk 
(1983), the variables in the sequence must converge to one of  the bounds. Moreover,  
the series has to converge to a point. When one of  the bounds of  a variable are not 
changing, this variable is selected for the partition in the algorithm. When one of  

x__~ + Therefore, the variables is at its bounds the representation is exact, y+ = rik. 

0 >_ f ( ( k , )  _ f L ( ( k ' )  > f~,,k' _ f~ '  > 0 (C.39) 

which means that equality between the lower bound fL  and the original function f 
must  hold. Since by Property 7, f~ '  is a lower bound to the global optimal solution, 
it corresponds to the global solution. �9 
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